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A Numerical Comparison of Integral Equations 
of the First and Second Kind for Conformal Mapping 

By John K. Hayes, David K. Kahaner and Richard G. Kellner* 

Abstract. Two methods for computing numerical conformal mappings are compared. 

The first, due to Symm, uses a Fredholm integral equation of the first kind while the 

other, due to Lichtenstein, uses a Fredholm integral equation of the second kind. The 

two methods are tested on ellipses with different ratios of major to minor axes. The 

method based on the integral equation of the second kind is superior if the ratio is 

less than or equal to 2.5. The opposite is true if the ratio is greater than or equal to 

10. Similar results are obtained for other regions. 

Introduction. Let D be a bounded simply-connected region in the plane with a 
smooth boundary curve L. Then it is well known that there is a conformal mapping 

f which takes D in a 1-1 fashion onto the unit disc 11 < 1 in such a way that a given 
point zo C D is carried into f(zo) = 0. Moreover, f is uniquely determined up to an 
arbitrary rotation of the disc, and f can be extended continuously to D + L. The 
determination of f is equivalent to the determination of the Green's function of D. 

Recently, Symm [12] suggested a method for conformal mapping which repre- 
sents the regular part of the Green's function of D as a single-layer potential on L. 
This results in a Fredholm integral equation of the first kind with a logarithmic ker- 
nel. An algorithm based on this integral equation for computing the mapping numeri- 
cally [12], as well as an improved version [5], compared favorably with numerical 
methods based upon orthogonal polynomials. 

The utility of integral equations of the first kind for the solution of numerical 

problems has been viewed with skepticism. Indeed, a search of the literature shows 

that, whenever a problem can be formulated both as an equation of the first kind 

and as an equation of the second kind, the latter is almost always chosen. Recent 

work, however, shows that equations of the first kind can be the basis for useful 

numerical procedures (see [71, [41, [10]). 

The feasibility of numerically solving the integral equation used in Symm's 
method depends upon the nature of the spectrum of the associated operator. In [11] 
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it is shown that the spectrum of the operator associated with Symm's method is real, 
and that the nth eigenvalue tends to zero like n- 1 . Since this is relatively slow con- 
vergence to zero, we expect that a numerical method for solving the associated equa- 
tion of the first kind should converge. 

In this paper, we compare the numerical method of conformal mapping described 
in [5] , which uses the integral equation of Symm, with a numerical method which 
uses an integral equation of the second kind. For the latter we have chosen the num- 
erical procedure described in [1] which uses the integral equation of Lichtenstein. A 
description and comparison of various methods based upon integral equations of the 
second kind may be found in the comprehensive book of Gaier on conformal mapping 
[2]. 

Description of the Methods. Let D, L, f(z), and zo be as before. We assume 
that L has continuous curvature and that f has been extended by continuity to D + 
L. The assumption on L is more restrictive than is necessary, but we shall not be 
concerned with weakening it. 

(a) Symm's Method. It is known that f(z) can be represented as 

(1) f(z) = (z - 
z,) exp[g(z) + ih(z)], 

where g and h are real-valued harmonic conjugates, and g satisfies the boundary-value 
problem 

v2g(z)=O, zeD, 

g(z)=-loglz-zol, z L. 

Moreover, g(z) can be represented as a single-layer potential with continuous density 
function p(?), 

(2) g(z) = () loglz - I IdrI, z E D, 

subject to a possible rescaling of D (see [9]). 
In the case that the transfinite diameter [6] of D is precisely equal to 1, a 

constant might have to be added to the above representation (2) for g. However, we 
do not concern ourselves with this case for the following reason. If the transfinite 
diameter of D is 1, then the operator A defined by 

(A p)(z) = fLp() logIz - I Id I, z E L, 

has a zero eigenvalue [6]. This would lead to nonuniqueness and an ill-conditioned 
system of equations in the numerical scheme. Thus we assume, by means of a pre- 
liminary rescaling of D if necessary, that the transfinite diameter of D is not 1. 

Since the single-layer potential in (2) is continuous everywhere, including the 
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curve L, the representation (2) along with the boundary values for g(z) lead to the 
equation 

(3) f (?) loglz - ~I jd = loglz - ZoI, z C L. 

After (3) has been solved for ,u(?), the mapping problem has essentially been solved. 
For then g and h are obtained by the quadratures 

(4) g(z) = fu'(?) loglz - tj Idtj, 

(5) h(z) =L p(?) arg(z - )jd jI, 

for any z E D + L, and f(z) is then determined by (1). The function h(z) is only 

determined to within an arbitrary constant, and this corresponds to an arbitrary rota- 
tion of the unit disc. 

The corresponding numerical procedure consists of discretizing equation (3), 

solving it for a discrete approximation to p(?), and finally performing numerical quad- 

ratures to obtain approximations to g, h, and thus f. A complete description of the 
numerical procedure which we used for the following tests may be found in [5]. We 

denote this method by (S). 
(b) Lichtenstein's Method. Take zo = 0 for convenience. Consider the single- 

valued analytic function in D 

(6) w(z) = i log [zif(z)] 

and let w = u + iv, where u, v are real-valued functions. The function u(z) = 

arg(f(z)) - arg(z), z E L, is the angular distortion function. 
By applying Green's third identity to u(z), Lichtenstein [8] obtained the in- 

tegral equation 

(7) u(z) = - fLN(z, )u(?)jdl + ,(z), z E L, 

where 

N(z, ) a(loglz - t1)lan, 

and 

(8) @(z) =f logjId loglz - t1. 

Here, ng; is the unit outer normal to L at the point ? C L, and the integral in (8) is 

taken in the sense of the Cauchy principal value. N(z, ?) is the Neumann kernel. 
As was the case with (S), the conformal mapping may be easily found once the 

integral equation has been solved. For if (7) has been solved for u(z), then f(z) may 
be found for all z E L by (6), since by definition v(z) is loglz I on the boundary curve 
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L. The Cauchy formula for analytic functions then completely determines f(z) in D. 
We use the numerical implementation of the above which was described in [1] 

and which we summarize here. The integral in (8) is singular, so the alternate repre- 
sentation 

(9) @1(Z) =- f [arg(&) - 2 arg(& - z)] d arg(& - z) + arg(z) + fr 

is used. The integrand in (9) is a smooth periodic function, and the trapezoidal rule, 
which in a sense is the most accurate quadrature formula for periodic functions [1], 
is used to evaluate (9). The right-hand side of (7) is discretized by means of the 
trapezoidal rule, and the resulting linear algebraic equations are solved by successive 
substitution. We shall denote this method by (BYZ/L). 

Solutions to (7) are determined only to within an arbitrary constant, since 

(10) 
I 

LN(z, t)Jdrj = 1. 

This corresponds to the fact that f(z) is determined only to within an arbitrary rota- 
tion of the unit disc. Thus it is convenient to use the pseudonorm 

Ilu 11= sup lu(z.) u(zk)I, 

which identifies functions differing by a constant. It is well known that the Picard 
iterates of (7) converge geometrically in this pseudonorm for any L and any function 
(. A simple proof of this is given in [1] for convex regions. 

The iterates of the discretization of (7) need not converge. This does not seem 
to have been observed in the literature. Indeed, in [1] it is stated, referring to the 
aforementioned convergence proof, that "the preceding argument has the advantage 
of applying also to the discretization... ." This assumes, however, that the value of 
the discretization of (l11r)fLN(z, t)Jdrj is approximately equal to 1 for all mesh points 
z E L. We have observed, numerically, that values somewhat greater than 1 (say 1.1) 
still yield convergent iterations. For the 10: 1 ellipse given below, the approxima- 
tion to the integral using a coarse mesh was greater than 2 for some z and the itera- 
tion diverged. In this case, we solved the discretized equations by Gaussian elimina- 
tion. The answers were not even correct in the first digit. 

Testing. Calculations with (S) were performed using the program described in 
[5]. (BYZ/L) was coded according to the description in [1], which was summarized 
above. As a benchmark, and to provide confidence in the validity of our version of 
this code, we attempted to duplicate the results in [1, Table I] . Our answers were 
found to be about 5-10% more accurate, presumably because of word-length differ- 
ences.** 

**This allows for the fact that the "exact" values given in [1] are slightly in error. 



516 JOHN K. HAYES, DAVID K. KAHANER AND RICHARD G. KELLNER 

For our test problems, we chose the regions bounded by the curves 

(a) (X/P)2 + y2 = 1, p = 1.25, 2.5, 5.0, 10.0, 20.0, 

x= [2 + c sin(kO)] cos 0, 
(b) 

y = [2 + c sin(kO)] sin 0, 0 < 0 < 21r, k= 3, 7, c = .1, .25, .5, .75, l.O. 

Thus, there are fifteen different geometries. In each case, the origin was mapped into 
itself and no attempt was made to capitalize on the symmetry of the region. The 
problems above were run by discretizing the boundary into 32, 64, 128, 256, and 512 
segments of equal arc length. The arc length was computed to within only 10-9, which 
limits the numerical mapping to this accuracy. Thus, there were a total of 75 cases. 
For each geometry, we use the results for the 512-point case as a standard. A com- 
parison of these cases from (BYZ/L) and (S) showed sufficient agreement to justify 
this approach. Furthermore, the conformal mapping of an ellipse may be found 
analytically. Numbers calculated from the analytic expression also confirm that the 
above approach is valid. 

Because of the maximum modulus principle, we only compare errors on the 
boundary. Moreover, we limit ourselves to comparing errors in argument, since it has 
been our experience with (S) that errors in argument are about equal to errors in 
modulus. We summarize our results in a series of graphs, one for each geometry. On 
each graph we plot for (BYZ/L) and (S) a measure of the error versus the number of 
boundary points used in the approximation. The measure of error which we use is 
the error in argument (relative to the 512-point standards) averaged over the 32 points 
common to all calculations for the geometry in question. (BYZ/L) did not converge 
for some problems. The results for these cases are not plotted. 

Test Results, Modifications, and Programming Problems. If the domain is badly 
distorted, (BYZ/L) may fail to converge while (S) still provides acceptable answers. 
For almost circular domains, (BYZ/L) is both accurate and converges in only a few 
iterations. Regions of average distortion are mapped about equally well when both 
methods use small numbers of boundary points. Note that, since the boundary curves 
for the test regions are analytic, the accuracy in (BYZ/L) should improve superlinearly 
because trapezoidal quadrature is used. In some cases, this superlinear convergence is 
apparent. In others, the accelerated convergence is only beginning to appear with 
256 points. The amount of computer time for (BYZ/L) varies with the number of 
iterations necessary for convergence, but, for the 75 problems tested, the total time 
for (BYZ/L) was amost 2/3 that of (S), allowing a maximum of 50 iterations. In- 
spection showed that those calculations requiring all 50 iterations were, in fact, di- 
verging. Memory requirements are about equal for (BYZ/L) and (S) since both need 
to store an N x N matrix, where N is the number of boundary points used in the 
approximation. 
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TableIa -2 
10 , , , 

Conformal map of P= 1.25 
(p)2+y2=1. -4 

Average error vs. number of 

boundary points. io-6 

(BYZ/L) \(S) 

i-8 

10 
1-1? 1 

-2 1 32 64 128 256 2 1I , I I 
p=2.5 p =5.0 

-4 - I 

10 10 

-6 -3 10 0= 1p 

-8 I 

10 I E ,E10-7 1 0 
1 32 6 4 128 256 32 64 128 256 

10 I I 1 0 1 

p=IO.O P=20.O 

4~~~~~~~~~~~~ 

-3 ~~~~~~~~~~~~~~~~~-3N 
10 1.0N 

-5 N-5 10 N10 
IN 

0 
3 2 6 4 128 256 

10 
3 2 64 128 256 

The algorithm used by (S) allows for boundary points that are not equally spaced 
with respect to arc length, and (BYZ/L) can also be so modified. This has been shown 
in [5] and [1] to enable one to obtain greatly improved accuracy with the same total 
number of boundary points. However, the optimum spacing of boundary points for 
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TableIb -2 
10 l l l 

Conformal map of E0.I 

x=E2+Esinf(78)Jcos9, 104 

y= E 2+e sin ( 78)] sin 9, 0'982,r. -6 

Average error vs. number of 16 

boundary points. 

-68 
(BYZ/L) (S) 

-Io0 

32 64 128 256 

E=0.25 E0.5 
10-10 

io-3 I 0-10 ; ; 

10~~~~~~~ 

I 0-7 65~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1-9 L \ 1-70 
2 32 64 128 256 2 32 64 128 256 

10 66 10 

3 2 64 128 256 32 64 128 256 

(BYZ/L) is not consistent with the optimum spacing for (S) because of the different 
kernels. So as not to penalize either algorithm in our tests, we distributed points 
equally with respect to arc length. 

In [1], the authors suggest computing 1(z) by the trapezoidal rule with N points. 
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Table Ic -3 

Conformal mapof 1=0. 

x = E 2+e sin (39)] cos (9), 105 

y= E2+esin(39)]sin(8),0R<827r. 

Average error vs. number of l0- 

boundary points. 

10 
\( BYZ/L) xX ( S ) 1 
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10 10 

7 ~~~~~~~~~~6 10-11 ' , , l lo-lo , , 10 

-9 -8 
10 10 

10 I I I i0 I I 

0 32 64 128 256 1 32 64 128 256 
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62 00 

10 I102 

-8 -64 
I10 10 

10 
32 64 128 256 

10 
32 64 128 256 

However, the integrand in 4(z) can be quite bad. For example, with p = 10 in (a) 
above, the integrand looks like an approximation to the derivative of a delta function. 
Therefore, there seemed to us to be no reason to tie the evaluation of this integral to 
the discretization in the integral equation. Consequently, we repeated some of the 
calculations in (BYZ/L) using the trapezoidal rule with more points to compute 4, 
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Table I -2 

Conformal map of P=2.5 

(x)2+ 2 1-4 

Average error vs. number of 

boundary points N. Om indicates -6 10 
that mN boundary points were 2 

used in the computation of 16 l8 

6 0 6 
32 64 128 256 

10 I 0 10 
p =5. 0 p=I0.0 

3 
3~~~~~~~~~~~~~~~~~~~~~~~~~~() 

-75 -5 

10 10 
32 64 128 256 32 69 128 256 

while keeping N equations. The results are shown in the preceding graphs. The errors 

never got any worse and, in most cases, they were substantially smaller. The trape- 

zoidal approximation to 1 requires O(N2) calculations. Additional storage and time 

costs are minimal compared to increasing the size of the matrix. 
We feel that (BYZ/L) was a good representative of the various methods of con- 

formal mapping using integral equations of the second kind with which to have com- 

pared (S). We also tested the methods of Gershgorin and of Carrier, which use equa- 

tions of the second kind and which were discussed in [1]. We feel, in agreement 

with [1], that (BYZ/L) has certain advantages over these methods. A fairly complete 

summary of the results obtained by using these various methods may be found in [2]. 

We note that, although the method of Carrier was stated correctly in Eqs. (11) and 

(11') of [1], it was, unfortunately, stated incorrectly on p. 119 of [1] and this has 

been carried over to the book of Gaier [2]. 

Conclusions. Our tests have shown that the integral equation of the first kind 

can be a useful tool as a basis for numerical procedures, and that results obtained 

with it can compete with those obtained using equations of the second kind. 
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The method (BYZ/L) is clearly better than (S) if the domain to be mapped is 
not excessively distorted from a circle. Even if the domain is distorted, (BYZ/L) may 
be better if the mesh is sufficiently fine and special care is used in computing the 
function ID(z). 

The method (S), on the other hand, will handle very distorted domains, even 
with a relatively small number of boundary points. Furthermore, although it has not been 
stated above, our tests have shown that (S) more often gave a discrete approximation 
to arg(f(z(s))) which was a monotone increasing function of s. Clearly, this function 
has this property. 

If the boundary of the region to be mapped has a corner, the equations must be 
altered at the corner with (BYZ/L) but not with (S). Furthermore, the superlinear 
convergence of the trapezoidal rule is lost. Finally, if the image of an interior point 
is required, an additional procedure is needed for (BYZ/L). 
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